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Incompressible two-dimensional calculations are reported for the impulsively started lid 
driven cavity with aspect ratio two. The algorithm is based on the time dependent stream- 
function equation, with a Crank-Nicolson differencing scheme for the diffusion terms, and 
with an Adams-Bashforth scheme for the convection terms. A multigrid method is used to 
solve the linear implicit equations at each time step. Periodic asymptotic solutions have been 
found for Re = 1OOOO and for Re = 5000. The Re = 5OOO results are validated by grid retine- 
ment calculations. The solutions are shown to be precisely periodic, and care is taken to 
demonstrate that asymptotic states have been reached. A discussion is included about the 
indicators that are used to show that an asymptotic state has been reached and to show that 
the asymptotic state is indeed periodic. ‘c 1990 Academx Press, Inc. 

1. INTRODUCTION 

Cavity flows have been a subject of study for some time. These flows have been 
widely used as test cases for validating incompressible fluid dynamics algorithms. 
The preponderance of such studies have addressed the steady flow problem, such 
as Chia et al. [4] and Schrieber and Keller [ 171, and the potentially rich unsteady 
cavity dynamics have only recently begun to be addressed. Greatly increased 
computational capabilities make possible the study of unsteady flows and initiate 
a new chapter in numerical analysis, determining the qualitative properties of the 
solutions of time dependent partial differential equations from their simulation. 
Examples of this type include a study of transition to turbulence in a two-dimen- 
sional cascade flow by Fortin et al. [3], and a study of the transition to chaos 
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for a Boussinesq fluid in a vertical cavity by Paolucci and Chenoweth [ 161. Recent 
work on the numerical analysis of large time and asymptotic solutions of partial 
differential equations includes the study of the convergence of attractors for linite- 
dimensional approximate systems to the attractor of the original system by Hale 
et al. [ 111, the study of the large time behavior of Galerkin approximations to 
Navier-Stokes equations by Constantin et al. [2], and the study of finite element 
approximations of the nonstationary Navier-Stokes equations by Heywood and 
Rannacher [ 12-141, and especially for behavior as t + OG in [ 141. A theoretical 
treatment of the dynamical systems approach to the Navier-Stokes equations can 
be seen in Constantin and Foias [l], and in Temam [ 191. Both the qualitative 
nature of asymptotic states and the way in which they develop are new and exciting 
areas of research in partial differential equations. The driven cavity problem gives 
a computationally reasonable model fluid problem in which to investigate the 
qualitative features of the solution space of a physically reasonable infmite-dimen- 
sional dissipative dynamical system. In contrast with other unsteady problems that 
are currently being investigated, the driven cavity is a self-contained system with 
realistic nonperiodic boundary conditions, with steady nonperiodic forcing, and 
without artilical throughflow boundary conditions. 

The vortex dynamics for unsteady Navier-Stokes flow in the driven cavity for 
various aspect ratios and Reynolds numbers with an impulsively started steady lid 
were studied in Gustafson and Halasi [8,9], and in Goodrich and Soh [7]. A 
persistant final oscillation in the aspect ratio two driven cavity with a 40 x 80 grid 
was shown in [9] at Re = 10,000 and t z 300, and the conjecture was raised that 
a qualitative transition had occurred to an unsteady asymptotic flow. The present 
paper continues that study by addressing the question of whether an unsteady 
asymptotic solution exists in the driven cavity with aspect ratio two. In Section 2 
we discuss some indicators for monitoring the development of a flow, for identifying 
an asymptotic flow state, and for presenting the qualitative nature of that state. In 
Section 3 we present and discuss the algorithm that is used for the computations 
reported in this paper. In Section 4 we discuss a periodic solution at Re = 10,000 on 
a coarse 48 x 96 mesh, comparing with and extending the results in [9]. In 
Section 5 we present and discuss the main results of this paper, two periodic 
solutions at Re = 5000 on 48 x 96 and 96 x 192 grids, with periods of approximately 
2.477 and 2.309, respectively. The two asymptotic states computed at Re = 5000 
have qualitatively similar dynamics. All three of the computed asymptotic states 
reported in this paper are periodic with very precise repetition of the asymptotic 
cycles. Based upon these computations we conclude that a Hopf bifurcation does 
occur in the aspect ratio two driven cavity for a critical Reynolds number 
Re, < 5000. In Section 6 we discuss a number of continuing and remaining issues. 

2. MEASURES OF QUALITATIVE FLOW FEATURES 

Flow visualization is a fundamental problem for computational fluid dynamicists 
as well as for experimentalists. This is especially true for the resolution of small 
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scale flow details. A primary issue for the simulation of flow evolution to an 
asymptotic state is to identify measures that will give reasonable assurance that an 
asymptotic state has in fact been attained. This issue is somewhat obscured when 
investigating flows that converge to a steady state. We will list and briefly discuss 
the measures that we have used for the qualitative representation of flow simula- 
tions. 

2.1. Field Representations 

The first series of measures and indicators represent the standard two-dimen- 
sional flow field data. The representations that we have found useful are: 

(1) Streamfunction contour plots. These are useful for defining the large scale 
flow features. When overlayed with normalized velocity vectors, they give a good 
balance between large and small scale resolution. 

(2) Streamfunction surface plots. These plots are good for presenting large 
scale flow features. Like all surface plots they give an immediate and vivid impres- 
sion of scaling throughout the flow field, but depending upon the view of the 
surface, prominant flow features can mask smaller scale structures. 

(3) Velocity vector plot. These plots are standard and are almost indispen- 
sible for actually visualizing the flow. Normalized velocity vectors are better for 
revealing the smaller scale structures. 

(4) Kinetic energy contour plot. These show the momentum scale for the 
entire flow. 

(5) Kinetic energy surface plot. These are extremely useful for showing the 
momentum scale for the flow and its various features. This is an excellant comple- 
ment to either a normalized velocity vector plot or a streamfunction contour plot 
overlayed with normalized velocity vectors. 

(6) Vorticity countour plot. These are extremely useful for following vortex 
dynamics, particularly for vortex pairing and splitting as in [lo]. Vorticity can be 
concentrated, so vorticity plots often reveal less than streamfunction contours 
about overall flow dynamics. Vorticity data is very useful for highlighting the 
resolution failures of an algorithm. 

(7) Vorticity surface plot. Since vorticity contours tend to be concentrated, a 
surface plot can give a better global view of the vorticity for a flow. Large regions 
of constant vorticity contrast well with local singularities and steep gradients. 

(8) Pressure gradient vector plot. These clearly reveal principle vortex centers 
and their relative significance as field sources compared to secondary vortices. 

The algorithm that we use for the results reported in this paper does not require 
a pressure solution, so we will not present any pressure data. The pressure gradient 
has been used to good effect by Gustafson and Halasi in [S]. All of the field 
representations that do not use pressure data were produced for this study, but for 
the sake of brevity the flow field will be represented just by streamfunction contour 
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plots, with and without normalized velocity vector overlays, and by surface plots of 
streamfunction, kinetic energy, and vorticitiy. 

2.2. Indicators of Dynamics 

The second series of measures and indicators are for tracking convergence to an 
asymptotic state and for understanding the qualitative nature of that state. These 
various measures and indicators are scalars that are either global indicators or 
point data values. Global indicators can be obtained by using various mathematical 
norms on the flow data, or on the flow change data. Any of the scalar valued data 
can be obtained at each time step, and there are a variety of ways to display the 
information content of such scalar time series data. A simple graph of data plotted 
against time gives a quick and familiar view of the time changes in scalar data, 
although this type of presentation can mask important details. A spectral density or 
power spectrum is a well-known device from signal processing which identifies the 
flow frequencies and their relative strengths. A phase diagram can be presented for 
scalar data either for one variable with the value at time t, plotted against the value 
lagged by k time iterations at t, ~ k, or for two separate variables at the same time 
step plotted against each other. Spectral densities and phase diagrams are widely 
used to investigate and present the qualitative features of nonlinear dynamical 
systems. Both of these methods are particularly useful for classifying unsteady flows 
as either periodic or aperiodic, for identifying critical parameter values for transi- 
tion between qualitatively different flows, and for identifying chaotic or turbulent 
flows. The indicators that we have found useful are: 

(9) The relative L, norm of the streamfunction change per time step. This is 
a global measure and is calculated as 

This measure is similar to standard convergence indicators and is easy to compute, 
but it is an integrated measure and tends to mask relatively small scale flow 
features. We did not look at the combined relative change in streamfunction and 
vorticity, which could be an interesting and more sensitive measure than just the 
streamfunction or vorticity data considered separately. 

(10) The maximum and minimum streamfunction value. These measures 
provide useful information about the location of the two main vortices in the cavity 
and about the dynamics of the asymptotic solution at the center of each of these 
vortices. In addition to the global extremes of the streamfunction, it would be inter- 
esting to also record other local extremes in order to identify and track vortex 
centers and to give their relative intensities. 

(11) The relative L, norm of the vector field change per time step. This is also 
a global convergence measure and is calculated as 
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We used this measure along with the relative L, norm of the streamfunction change 
data and found that they behaved very similarly to each other. A choice between 
these two measures can be easily made on the basis of which variable set is being 
used. 

(12) The total kinetic energy. Calculated for the entire grid minus the boun- 
daries at each time step as 

fA.u Ay c au;: l II :. 
i. .I 

This measure was more sensitive than the streamfunction change data and was a 
very useful complement to that data. The time dependent dynamics of a flow are 
formulated in terms of momentum balance equations, so that such a global momen- 
tum measure would seem to be very appropriate data for the assessment of the 
evolution of a flow. In fact, our experience (see Section 5) has indicated that very 
significant evolution can still occur even though the streamfunction or velocity time 
step change data becomes as small as 0( lo-‘) or 0( 10 P8), with the total kinetic 
energy remaining noticeably sensitive to the continuing evolution of the flow. This 
experience suggests that common practices for stopping calculations could produce 
misleading results about the qualitative features of asymptotic flows. 

(13) The maximum acceleration. Determined for the entire interior grid as 

max 

The point where the maximum acceleration occurs can change with the time step, 
possibly in a very discountinuous way. Consequently, this indicator can be sensitive 
to the time scales and dynamics of both the local change per time step in the point 
values of the velocity field and the global convective transport processes within the 
flow. There can be subtle and complex relationships between these processes. Note 
that this indicator is not the maximum convective derivative, which would be easy 
to obtain and could be interesting to try. 

(14) Streamfunction value at a point. 
( 15) Velocity component at a point. 
(16) Kinetic energy value at a point. 
(17) Vorticity value at a point. 

For the calculations reported in this paper we found the relative L, streamfunction 
change norm and the total kinetic energy to be very good complements for indi- 
cating convergence to an asymptotic state. The streamfunction change per time step 
data showed convergence earlier, and the total kinetic energy showed final 
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convergence to the asymptotic state. This conclusion was augmented by point data 
time series for streamfunction, kinetic energy, and vorticity. The sensitivity of the 
indicators increased from the streamfunction, to the velocity components defined as 
streamfunction derivatives, then to the kinetic energy defined with squared velocity 
components, and finally to the vorticity defined as the Laplacian of the stream- 
function. 

3. AN ALGORITHM FOR TIME DEPENDENT INCOMPRESSIBLE 
NAVIER-STOKES EQUATIONS 

This section briefly presents the implicit finite difference streamfunction algorithm 
for the unsteady incompressible Navier-Stokes computations reported in this paper. 
Further specific algorithm details may be found in Goodrich [6] or Goodrich and 
Soh [7]. An explicit MAC (marker and cell) primitive variable scheme was used in 
[8, 93. The time step restriction for such an explicit scheme is prohibitive for truly 
long time studies. The qualitative flow dynamics of both codes agree for the 
computations that are comparable. 

3.1. Flow Equations 

In a bounded open region Sz, the general dimensionless Navier-Stokes equations 
for incompressible flows are 

~+(uV)u--$du= -Vp+F forxinQandt>O, 

v.u=o forxinQandt>O, 

u(x, 0) = a(x) for x in Q at t = 0, 

Nu(x, ?)I = b(*t, t) forxinXJandt>O, 

where u is the velocity, p is the scaled pressure, Re is the Reynolds number, F is 
the volume force per unit mass, %2 is the boundary of Q, and B is the operator that 
defines the boundary conditions. We will ignore the body force F. For the simula- 
tions of two dimensional cavity flows that we will be reporting, the computational 
domain 52 is just a rectangle as in Fig. 1. The length and velocity scales for these 
cavity flows are taken to be the lid length and velocity, so that the lid velocity is 
always 1. The velocity field for two-dimensional flows may be written in terms of 
the streamfunction + as 

u(x, t)=2andu(x, t)= -g ay forxinQandta0, (la) 

and the dimensionless equations for evolution of time dependent viscous incom- 
pressible flows may be written as the streamfunction equation 

aA* 1 a* ale/ w a* -=- 
at Re A2J/+zA&-FAx forxinQandt>O. (lb) 
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In this formulation the data for the impulsively started driven cavity consists of the 
initial values 

9(x, 0) =o for x in Q at t = 0, (lc) 

and the standard boundary conditions (see Fig. 1) 

$4x, t)=O forxin&2andt>O, 

~(z,y,O) = 0 for 0 = t 

(Id) 

FIG. 1. The two-dimensional computational domain, 0 $ s < 1 and 0 < y < 2. 
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$x, t)= 1 for x on the cavity lid, and t > 0, 

(le) 
$x, t)=O for x on the cavity walls, and t > 0, 

where a/aq is differentiation in the exterior normal direction at the boundary. 

3.2. The Discretization 

The discrete approximation for the streamfunction IJ = {$(x, t) : x E 52, t > 0} will 
be taken to be Z = { 2” : m = 0, 1, . . . } = {z:,: i = 0, 1, . . . . 1, j = 0, 1, . . . . J, m = 0, 1, . . . } 
on the rectangular computational mesh. We will use a uniform grid on the 
rectangular domain, and we will use centered spatial differencing for Eq. (lb), with 
a Crank-Nicolson time differencing for the diffusion terms, and a second-order 
Adams-Bashforth time differencing for the convection terms. Let La be the conven- 
tional live point centered difference approximation to the Laplacian, let Bi be 
the conventional 13-point centered difference approximation to the biharmonic 
operator, and let 6, and 6,. be the conventional centered difference operators 

With this notation and differencing scheme, we may discretize Eq. (lb) as 

La(i”+‘)-& Bi(Z”+*) 

=La(i”)+& Bi(P) - y [S,(S,(?) La(P)) - 6,.(6,(P) La(Y))] 

+$ [S,(S,,(Z”-I) La(Z”-‘))-6,.(6,(2”-‘) La@“-‘))]. (2) 

In order to incorporate the boundary condition (le), the standard finite difference 
approximations are used for modifying the discrete equation (2) at grid points next 
to the boundary. Note that this algorithm is second order acurate in both time and 
space. The velocity components (uyj, t)Zf) are directly recovered from the discrete 
streamfunction solution as 

and Ll” = - 
1.J &tz?+,.ipz~-~.J)’ 

Notice that the velocity components are both defined at each grid point and not at 
different locations on a staggered grid. In our formulation we use a grid centered 
central difference expression for the mass conservation equation. The velocity 
solution is exactly discretely divergence free with respect to this divergence 
operator. 
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3.3. A Solver 

The operators in the implicit time stepping equation (2) do not change with time. 
In fact, the discrete streamfunction solution ?‘+I from Eq. (2) depends upon the 
time step only through the solutions at the previous two time steps. The problem 
that must be solved at each time step may be written as 

La@“+‘)-- ;fe Bl(z 
. -n+I)=T(p, gn-l), (3) 

where T is the discrete source term from the right-hand side of (2). This problem is 
a discretization of 

A*-&+f forxinRatt=r,+,, 

an elliptic partial differential equation that combines the Laplace and biharmonic 
operators. At each time step we use a multigrid method to solve these equations, 
as in Goodrich [6]. The biharmonic operator is factored as two Laplacians as in 
Linden [lS], point Gauss-Seidel relaxation is used for the smoothing operator, 
and linear restriction and prolongation operators are used. A V-cycle iteration 
scheme is used with three iterations per grid level while coarsening and none while 
refining. At each time step, 10 to 15 iteration cycles are used to reduce the residuals 
in (3) to less than 5.0x lo-‘“. 

4. NUMERICAL RESULTS AT Re= 10,000 

The first numerical results that suggest a periodic solution for the driven cavity 
with aspect ratio two are in Gustafson and Halasi [9]. These computations are at 
Re = 10,000 for 0 < I d 360, using an explicit primitive variable Euler-MAC scheme 
on a 40 x 80 grid with dt = A. The published results are a series of normalized 
velocity vector plots of the flow field that suggest an eventual periodic pattern of 
evolution and interaction in the cavity vortex dynamics. The grid resolution that 
was used at this Reynolds number leaves open the possibility that the computa- 
tional mesh might be filtering out dynamical effects with smaller spatial scales. The 
reliance upon just the normalized vector plots leaves open the question of whether 
a periodic, a quasi-periodic, or an aperiodic flow was actually observed. The 
relatively short time interval that was calculated and the small number of flow 
periods that were observed does not ensure that the initial transients were fully 
dissipated and that a true asymptotic solution was obtained. 

An independent series of calculations was initiated to verify the results reported 
by Gustafson and Halasi [9]. These computations are at Re = 10,000 for 
0 d t < 1800, using the algorithm described in Section 3 on a 48 x 96 grid with 
At = &. These computations show that the asymptotic state on this grid is a 
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periodic flow, although the asymptotic state occurs only at a much later time than 
suggested by Gustafson and Halasi [9]. The results of these computations are 
similar to the data for the stronger results that we have obtained at Re = 5000, 
which are the focus of this paper, so for the sake of brevity the data at Re = 10,000 
will be discussed but will not be shown. Several indicators were used to ensure that 
an asymptotic state was actually reached. The first global indicator is the relative 
L, norm of the streamfunction change per time step. This indicator suggests that a 
periodic asymptotic state has been reached at t z 300, as reported in Gustafson and 
Halasi [9]. The global maximum and minimum streamfunction values were 
tracked as the second and third global indicators of approach to an asymptotic 
state. The observed data showed that as the flow evolved, the maximum and mini- 
mum streamfunction values on the grid begin to oscillate at the centers of the upper 
and lower vortices. The maximum streamfunction value in the secondary lower 
vortex reaches its asymptotic oscillation at t z 550, and the minimum stream- 
function value in the primary upper vortex reaches its asymptotic oscillation at 
t z 900. A fourth global indicator is the relative L, norm of the vector field change 
per time step. This indicator suggested that a periodic asymptotic state had been 
reached at t z 500. The fifth global indicator is the total kinetic energy for the entire 
grid minus the lid. This data reaches a periodic asymptotic state at t x 1500. Besides 
this global data, local flow data was gathered at selected fixed points in the grid. 
At points with coordinates (i, j) = (44, 50) and (i, j) = (16,46) the values of the 
streamfunction, the x and y velocity components, and the vorticity were recorded, 
and the kinetic energy at the point was calculated, at each time step for 1600 < 
t 6 1800. The first point is near the end of the ,wall jet that descends from the lid 
along the upper half of the downstream wall. The second point is near the end of 
the bounded shear layer as it approaches the wall after crossing the middle strip of 
the cavity. This data shows clean spectral signatures with one fundamental 
frequency. The data at the end of the bounded shear layer shows energization of 
harmonics of the one fundamental frequency as a result of convection through the 
shear layer. Based upon all of these indicators the discrete dynamics on this grid do 
appear to reach a periodic asymptotic state at t z 1500, with a period between 223 
and 224 time steps, or between 3.48 and 3.50 nondimensional time units. The 
periodic asymptotic flow on this 48 x 96 grid at Re = 10,000 is qualitatively the 
same as the vortex dynamics observed in [9]. 

A natural question is whether or not the periodic flow for this discrete system is 
a grid dependent phenomenon. This is a particularly relevant question for this 
simulation since the best steady solutions for the square cavity at Re = 10,000 are 
on a 256 x 256 uniform grid, and the 48 x 96 uniform grid that we are using clearly 
does not give anywhere near the same resolution. Another serious cause for concern 
is that the results reported by Gustafson and Halasi [9] on a 40 x 80 grid suggested 
a period of approximately 4.5, while our 48 x 96 grid calculation gives a period 
between approximately 3.48 and 3.50. To begin checking for grid dependence we 
conducted a calculation at Re = 10,000 for 0 <t < 500 using the algorithm in 
Section 3 on a 96 x 192 grid with At = A. This calculation shows a much more 
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FIG. 2. Streamfunction contour plot for I = 4000 with Re = 5000 on a 48 x 96 grid. 
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complex time evolution than the results for the same time interval on the 
48 x 96 grid, and it is possible that the 96 x 192 grid simulation is masking even 
finer scale dynamics. This suggests that the coarser grid was filtering smaller scale 
dynamic processes that could contribute to a more complex asymtotic state than a 
single frequency periodic flow. We have in fact concluded that the Re = 10,000 
simulation on a 48 x 96 grid is most likely inadequate for resolving all but the 
coarsest features of the cavity flow, and the periodic discrete solution on the coarse 
grid at Re = 10,000 cannot be accepted as giving a reliable portrait of the actual 
asymptotic continuum flow dynamics. Consequently, we discontinued the calcula- 
tions at Re = 10,000 and decided to initiate discrete simulations at Re = 5000, where 
less grid resolution would be required to capture the continuum dynamics. 

5. NUMERICAL RESULTS AT Re=5000 

Two different simulations were computed to asymptotic periodic states at 
Re = 5000 for the impulsively started driven cavity with aspect ratio two. Both 
simulations use the algorithm described in Section 3. The first simulation uses a 
48 x 96 grid with At = A, and the second simulation uses a 96 x 192 grid with 
At = &. The simulations at Re = 10,000 and Re = 5000 are similar in the sense that 
they all demonstrate a very clean and qualitatively similar periodic solution to the 
nonlinear discrete dynamical system that is being used as an approximation to the 
fluid flow in the cavity. The conclusion of the discussion in Section 4 about the 
Re = 10,000 simulations is that a 48 x 96 grid is inadequate for resolving all but the 
coarsest features of the cavity flow, so the calculated periodic discrete solution on 
the coarse grid at Re = 10,000 cannot be accepted as giving a reliable portrait of the 
actual asymptotic continuum flow dynamics. The Re = 5000 simulations are essen- 
tially different in this regard, and we may reasonably conclude that they are likely 
to represent at least the qualitative dynamic features of the actual continuum flow 
dynamics. The first supporting evidence is that the refined 96 x 192 grid has a 
resolution close to the 128 x 128 grid used in Goodrich [6] with the same 
algorithm to produce a steady square cavity solution in good agreement with the 
standard published Re = 5000 solutions. The second supporting evidence is that the 
grid refinement calculation produces flow dynamics that are close to the coarse 
grid results. In particular, the period given by the coarse grid simulation is 
2.469 < T< 2.484, while the refined grid simulation gives 2.305 < T< 2.313. 

5.1. Re = 5000 on a 48 x 96 Grid 

The computation at Re = 5000 on the coarser 48 x 96 grid will be presented with 
only a small amount of detail. The computation is for 0 < t < 4100, and the flow 

FIG. 3. Data at (i. j) = (44, 50) for 4000 < t ~4100, with Re = 5000 on a 48 x 96 grid; (a) Spectral 
density for streamfunction; (b) Streamfunction phase portrait, 15 time step lag; (c) Spectral density for 
kinetic energy; (d) Kinetic energy phase portrait, 15 time step lag; (e) Spectral density for vorticity; 
(f) Vorticity phase portrait, 15 time step lag. 



HOPF BIFURCATION 231 



232 GOODRICH, GUSTAFSON, AND HALASI 

reaches a periodic astmptotic state at t x 1100 with a period between g z 2.469 
and gz2.484. This flow is completely periodic with no apparent secular trend for 
1100 < t < 4100, or for approximately 1200 oscillation cycles. 

The entire flow field at t = 4000 is shown in Fig. 2 as a streamfunction contour 
plot. The main features of the flow are the primary and secondary circulations in 
the upper and lower cavity, the wall jet that descends from the lid along the upper 
half of the downstream wall, and the wavely shear layer between these two main 
circulations. There are tertiary corner vortices in the two lower corners that are 
separated from each other by one-sixth of the bottom wall where the secondary 
vortex in the lower cavity is attached to the lower boundary. Surface plots of 
streamfunction, kinetic energy, and vorticity show some lack of grid resolution 
especially in the boundaries near the end of the wall jet, and in the upper left 
corner. The flow at this instant is generally representative of the flow at any time 
during the entire cycle of the periodic asymptotic state. The vortex dynamics for 
this periodic asymptotic solution are similar to the dynamics for the refined 
96 x 192 grid. A key feature of the periodic vortex dynamics is the appearance of a 
pair of small counterrotating tertiary vortices along the downstream wall slightly 
below the end of the wall jet descending from the lid. The stronger and higher 
tertiary vortex periodically appears below the wall jet and is convected as a wavy 
disturbance along the shear layer between the primary and secondary vortices in 
the cavity. More detail will be presented for the similar dynamics of the refined grid 
solution. 

Figure 3a shows the spectral signature of the streamfunction at the point with 
coordinates (i, j) = (44, 50) or (x, y) z (0.92, 1.04), and Fig. 3b shows this data as a 
phase portrait plot of (I,+/; “, $Fi), both for 4000~ t 64100. Similar spectral 
signatures and phase portraits are shown for the kinetic energy in Figs. 3c-d and 
for the vorticity in Figs. 3e-f. This point is near the end of the wall jet descending 
from the lid along the downstream wall, and the data represents a sample with 6400 
time points, with between 158 and 159 data points in each period, and for more 
than 40 periods. Figures 4a-f show similar data recorded at a point near the end of 
the bounded shear layer across the middle of the cavity with coordinates 
(i, j) = (16,46) or (x, y) z (0.33,0.96). The values of streamfunction, kinetic energy, 
and vorticity from these two points all have extremely clean spectral signatures with 
one fundamental frequency. Harmonics are energized especially for vorticity by the 
effect of the bounded shear layer. The narrowness of the plot lines indicates the 
precise repetitiveness of this data for these 40+ periods. This point data indicates 
a precisely periodic solution at Re = 5000 on the 48 x 96 grid. 

FIG. 4. Data at (i, j)=(16,46) for 4OOO<r<4100, with Re=5000 on a 96x 192 grid, AI= A: 
(a) Spectral density of streamfunction; (b) Streamfunction phase portrait, 15 time step lag; (c) Spectral 
density of kinetic energy; (d) Kinetic energy phase portrait, 15 time step lag; (e) Spectral density of 
vorticity; (f) Vorticity phase portrait, 15 time step lag. 
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FIG. 5. Relative L, norm of streamfunction change, Re= 5000, 96 x 192 grid: (a) 5 <t < 100; 
(b) lOO<r<400; (c) 4OO<t~700; (d) 700<r~1000; (e) 1000<t~1300; (f) 13OO<r<1600; 
(g) 16OO<r<1900; (h) 19OO<td220; (i) 22OO~t<2500; (j) 25OO<r<2800; (k) 28OOct<3100; 
(I) 3100<rs3400; (m) 34OO<rd3700; (n) 37OO<r~40@@; (0)4000<r~4100. 
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FIG. 5-Conrinued. 
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FIG. 5-Continued. 

5.2. Re = 5000 on a 96 x 192 Grid 

The computation at Re = 5000 with the finer 96 x 192 grid is the main result and 
will be presented in some detail. The computation was for 0 < t < 4100, and the flow 
reaches a periodic asymptotic state at t z 3700 with a period between s z 2.305 
and g z 2.313. This flow is completely periodic with no secular trend for 
3700 < t < 4100, or for more than 170 oscillation cycles. 

A plot of the relative L, norm of the streamfunction change per time step is 
shown for 5 < t G 100 in Fig. 5a, for 100 < t < 4000 by intervals of 300 nondimen- 
sional time units in Figs. 5bn, and for 4000 < t < 4100 in Fig. 50. The total kinetic 
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FIG. 6. Total kinetic energy, Re= 5000, 96x 192 grid: (a) 5 Q r< 100; (b) lOO~f~400; 
(c) 4OO<t,<700; (d) 700<f~1000; (e) 1000<t<1300; (f) 13OO<ff1600; (g) 16OO<f~1900; 
(h) 1900<1<220; (i) 22OC<r<2500; 6) 25OWt<2800; (k) 28OC<t$3100; (1) 31OO<f<3400; 
Cm) 34OO<f<3700; (n) 37OO<f<4000; (0)4000<f~4100. 
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FIG. 6-Continued. 
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FIG. 6-Continued. 
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tions. At t ~2600 the streamfunction time step change starts to decrease while the 
kinetic energy begins to increase again. Between t =2700 and t=2800 both 
variables start to oscillate in what seems to be an erratic manner until t 2 2950. 
After this the data steadies down and becomes very regular until the streamfunction 
time step change data converges at t z 3250, and the kinetic enegy data converges 
at t z 3700. Contour and surface plots for streamfunction, kinetic energy, and 
vorticity on the refined grid show no visually apparent changes for 500 d t d 2000. 
Noticable pulsating changes begin to occur in this surface data only for 
2000 < t < 2500, along with a noticable increase in the momentum in the lower half 
of the cavity. Note that the relative L, norm of the streamfunction change per time 
step is O(5 x lo-‘) for t z 700. This is below what might easily be taken as a small 
test value used to stop the calculation with the result declared to be a steady 
asymptotic state. The actual asymptotic state has extremely regular oscillations in 
the relative L, norm of the streamfunction change per time step, with relative L, 
norm values that are 0(3 x 10e4) for t 2 3700. 

The precisely periodic nature of the asymptotic flow is shown in Fig. 7a by the 
spectral density of the relative L, norm of the streamfunction change per time step, 
and in Fig. 7b by the spectral density of the total kinetic energy, both for 
4000 < t 6 4100. Both spectral signatures show a single fundamental frequency near 
0.433 z &. Note that the streamfunction change data has one harmonic. Both of 
these spectral signatures are for global data and reflect the global dynamics on the 
entire grid. The global maximum and minimum streamfunction values were also 
recorded and are shown together in Fig. 7c as a phase portrait plotting (I&&, I&,) 
for 4000 < t < 4100. This plot is for data taken at 12,800 discrete time steps, with 
between 295 and 296 time steps per cycle, for more than 43 complete cycles. All of 
this data is plotted sequentially with time, so that the physical plot lines have been 
drawn over 43 times. The narrowness of the lines substantiates the precisely 
periodic nature of the asymptotic solution. The global minimum and maximum 
always occurred at the centers of the primary and secondary vortices in the upper 
and lower halves of the cavity. The effect of the periodic asymptotic flow is still 
apparent even in the centers of the two largest vortices. The entire streamfunction 
surface is vibrating with extreme precision. Note that the two extremes are 
oscillating approximately one-half of a period out of phase with each other. 

A qualitative portrait of the overall solution field at the single instant t = 4100 is 
given in Figs. 8a-d. The streamfunction surface plot in Fig. 8a shows a wavey 
disturbance or swelling that is periodically convected by the bounded shear layer 
across the middle of the cavity. This particular view shows the disturbance just 
before it is absorbed and dissipated by the boundary layer flow at the end of the 
bounded shear layer. The kinetic energy surface plot in Fig. 8b shows a periodic 
wave in the momentum ridge near the center foreground. The dramatic low point 
in the kinetic energy ridge is in the bounded shear layer just above the front of the 
streamfunction swelling, with local maxima and minima in the kinetic energy just 
upstream from this low point. There seems to be a periodic pulse of momentum 
associated with the periodic streamfunction disturbance. The vorticity surface is 
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FIG. 7. Global data for Re = 5000 on a 96 x 192 grid with 4000 < r G 4100: (a) Spectral density for 
relative L, norm of streamfunction change; (b) Spectral density for total kinetic energy; (c) Phase plot 
of maxi+} versus min{+ 1. 
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FIG. 8. The flow field for Re = So00 on a 96 x 192 grid at I =h!ock (a) Surface plot of Stream- 
function; (b) Surface plot of kinetic energy; (c) Surface plot of vorticity; (d) Streamfunction contour Plot. 
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FIG. 9. Streamfunction contours with directional vector plots for one cycle: (a) f =41~.~; 
(b) 1=4100.25; (c) r=4100.50; (d) t=4100.75; (e) r=4101.00; (I) r=4101.25; (g) f=4101.50; 
(h) t=4101.75; (i) t=4102.00; (j) r=4102.25; (k) t=4102.50. 
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FIG. 9-Conrimed. 
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FIG. 9-Continued. 
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shown in Fig. 8c. Note that the surface plots of streamfunction, kinetic energy, and 
vorticity all show smooth resolution of the flow solution over the entire grid. The 
streamfunction contour plot in Fig. 8d shows a recirculating boundary layer at the 
bottom of the cavity. This feature appears in the evolution of the flow before 
t = 500. Note that the streamline defining this feature is for I,+ = -0.001, while the 
streamline closest to the center of the primary circulation is for @ = -0.090. This 
recirculating boundary layer in the bottom of the cavity is imperceptible in the 
surface plots of streamfunction, kinetic energy, and vorticity, but it may be high- 
lighted by a low enough streamfunction contour or a normalized velocity vector 
plot. There are two local weak tertiary recirculations diagonally out of the corners, 
within the ends of the figure eight shaped streamline for I(/ = -0.001 and above the 
recirculating boundary layer along the lower wall. It appears that a single large 
third vortex is partially formed in the bottom of the cavity, but that there is not 
quite enough room below the secondary vortex to allow for the joining of the two 
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FIG. 10. Data at (i, j) = (88, 120) for 4000 < f < 4100, with Re = 5000 on a 96 x 192 grid: (a) Spectral 
density for streamfunction; (b) Spectral density for kinetic energy; (c) Spectral density for vorticity; 
(d) Streamfunction phase portrait, 31 time step lag; (e) Kinetic energy phase portrait, 31 time step lag; 
(f) Vorticity phase portrait, 31 time step lag; (g) Streamfunction versus kinetic energy; (h) Stream- 
function versus vorticity; (i) (u;,. u;,). 
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FIG. IO-Continued. 
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FIG. lo-Continued. 

weak tertiary vortices above the lower wall. The refined grid calculation shows 
quartiary corner vortices, resolved with between one and four grid points. The 
recirculating boundary layer along the lower wall is not present in the coarse grid 
asymptotic flow, which has two tertiary vortices in the lower corners separated by 
a short stretch of grid points where the secondary vortex attaches to the lower wall. 
The asymptotic coarse grid solution has a smaller total amount of kinetic energy 
on the interior grid than the asymptotic flow on the refined grid. These differences 
between the two asymptotic flow solutions are probably caused by the better 
resolution of gradients and momentum diffusion on the refined grid. 

Figures 9a-k are a series of eleven plots at time intervals of 0.25 over slightly 
more than one complete periodic cycle starting at t = 4100. These eleven plots are 
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streamfunction contours with normalized velocity vector overlays in a central band 
across the cavity, and they show the essential vortex dynamics in detail for a typical 
cycle of the periodic asymptotic flow. The first interesting feature of these dynamics 
is the wall jet that descends from the lid along the upper half of the downstream 
wall, with the periodic appearance and interaction of two small counterrotating 
tertiary vortices near the tip of this wall jet below where it errupts into the flow field 
as a whole. Note that the secondary vortex in the lower half of the cavity creates 
a relatively weak flow that rises along the lower half of the downstream wall. The 
triggering instability that generates the asymptotic periodic flow is possibly the 
interaction of these two opposing flows. The relative stength of these two small 
tertiary vortices is related to the relative strength of the two opposing flows along 
the downstream wall. The second interesting feature of these dynamics is the 
evolution of the flow as the stronger upper small tertiary vortex is convected by the 
bounded shear layer across the middle of the cavity. The existence of local recircula- 
tion in the flow is possible because there are local streamfunction extremes in the 
center of the small vortices as they leave the wall, with saddle points in the stream- 
function surface between the small vortices and the lower secondary vortex. The 
upper small tertiary vortex is convected to the streamfunction surface of the larger 
secondary vortex, the saddle point disappears, and the smaller vortex loses its 
independent identity to become a swelling on the side of the streamfunction surface 
of the larger vortex. This local swelling on the streamfunction surface is then 
convected across the bounded shear as a wavy disturbance in the streamfunction 
contour lines until the wall at the end of the shear layer is reached, where the local 
swelling is dissipated by the boundary layer. The bounded shear layer has an effect 
on the spectral signature of the local flow variables, since the nonlinear convection 
terms energize integer multiples of the basic frequency of the periodic shedding 
process at the end of the wall jet. In its final effects, the upper small vortex disturbs 
the flow all the way around the two large ciruclation patterns. Kinetic energy 
contours show this effect near the upper lid, and a close inspection of kinetic energy 
and vorticity surface plots shows an effect all along the upstream wall and along 
both the lid and the lower wall. These effects away from the central band in the 
cavity are slight. The final interesting feature of these dynamics is the history of the 
lower small counterrotating tertiary vortex which originates a little later and 
slightly below the upper small vortex. This local flow pattern is convected away 
from the wall sooner than the upper small vortex, but it is weaker than the upper 
small vortex, and as the upper small vortex emerges into the flow, the lower small 
vortex is pushed back toward the wall below its point of origin to be partially 
dissipated by the boundary layer. 

Figures lOa-i show nine plots of data at the partiular point with indexes 
(i, j) = (88, 120), or (x, ?I) z (0.92, 1.25), and for 4000 < t < 4100. This point is near 
the end of the wall jet that descends from the downstream end of the moving lid. 
The first three plots in Figs. 10a-c are for the spectra1 densities of the point values 
of the streamfunction, the kinetic energy, and the vorticity. Figure 10d is a phase 
portrait of (Il/“-“, (I/“), or the streamfunction point values plotted with a lag of 31 
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FIG. 11. Data at (i, j) = (32, 106) for 4000 < t < 4100, with Re = 5000 on a 96 x 192 grid: (a) Spectral 
density for streamfunction; (b) Spectral density for kinetic energy; (c) Spectral density for vorticity; 
(d) Streamfunction phase portrait, 31 time step lag; (e) Kinetic energy phase portrait, 31 time step lag; 
(f) Vorticity phase portrait, 31 time step ‘lag; (g) Streamfunction versus kinetic energy; (h) Stream- 
function versus vorticity; (i) (a:,, I$~). 
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FIG. 1 I-Continued. 



256 GOODRICH, GUSTAFSON, AND HALASI 

FIG. 1 l-Continued. 

time steps. Figures lOe, fare similar time lagged phase portraits for the point values 
of the kinetic energy and the vorticity. Figures log-i are phase portraits of 
(+;j> 4( ($j)’ + (uyj)*} 1, ($rj, Olj) w h ere o is the vorticity, and (uzj, uFj), respec- 
tively. Figures llali show n’ine similar plots at the particular point with indexes 
(i,j) = (32, 106), or (x, JJ) z (0.33, 1.10) and for 4000~ tG4100. This point is 
approximately one-third of the distance from the end of the bounded shear layer as 
it approaches the wall opposite the wall jet, after crossing the center of the cavity. 
The data in Figs. 10 and 11 are for every time step with a sample of 12,800 time 
points for 4000 < t < 4100, with 295 iterations per cycle and with slightly more than 
43 cycles during this time interval. All of this data is represented in each of these 
plots. Notice the appearance of multiples of the fundamental harmonic in the data 
from the point near the end of the bounded shear layer. The point data in these 
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figures shows the precisely periodic nature of the asymptotic flow with a fundamen- 
tal frequency of approximately 0.433 2 &. 

It was quite surprising to have to run the finer grid flow so long in order to 
obtain an asymptotic periodic state, since the coarse grid simulation converged at 
I z 1100. The recirculating boundary layer along the lower wall is present only in 
the refined grid asymptotic flow. The refined grid asymptotic solution has a larger 
total amount of kinetic energy on the interior grid than the coarse grid asymptotic 
flow. These differences between the two asymptotic flow solutions could be caused 
by a better resolution of gradients and momentum diffusion on the refined grid, 
particularly in the boundary layers. The precise long-term repetition of the periodic 
asymptotic state, the general qualitative agreement between the asymptotic 
dynamics of the coarse and tine grid solutions, and the general qualitative 
agreement between the two coarse grid simulations at Re = 10,000 with different 
algorithms, all lead us to believe that the computed solution is a genuine periodic 
asymptotic state and not just a numerical artifact. 

6. REMARKS AND DISCUSSION 

We would like to include some general remarks about numerical results and 
methodology as they pertain to this general new problem of computationally 
determining the qualitative nature of unsteady flows, especially for the long time 
behavior of unsteady flows. 

6.1. Methodology 

There are two views toward determining the qualitative behavior of a fluid flow. 
The first more predominant and easier view is to restrict attention to the branching 
diagram of the stationary steady flow problem. This is the bifurcation theory 
approach. The second view is to follow the unsteady flow to its final or asymptotic 
state. This is the dynamical systems approach. A main goal of both approaches is 
to determine all stable flow configurations. Both approaches may be said to be 
roughly equivalent if attention is restricted to stationary final states with u, =O. 
When progressing to the determination of qualitative flow behavior beyond the 
steady state the two approaches can yield different conclusions. 

In order to determine the transition to a periodic solution as the result of a Hopf 
bifurcation, the bifurcation theory approach typically uses an extended set of steady 
equations by finding the eigenvalues of an associated Jacobian matrix, and then by 
finding the bifurcation parameter value at which a complex conjugate pair of such 
eigenvalues crosses the imaginary axis. Some arguments for the bifurcation theory 
steady equation analysis are: (1) computational cost is lower than an unsteady 
analysis; (2) the critical threshold parameter is predicted “exactly,” although after 
several mesh refinements; (3) the variation of the threshold parameter with other 
parameters can be studied in a similar way. 

Some arguments for using the dynamical systems approach of following an 
evolving flow to its asymptotic state are: (1) a time dependent computation 
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“should” follow the “physics,” so stable branches can be explored with continuation 
procedures; (2) more complicated asymptotic states that occur further along a 
bifurcation diagram than the initial bifurcation points can be explored; (3) the 
dependence of the final state on initial and intermediate conditions can be readily 
tested; (4) all of the intervening dyamics will be exhibited; (5) a complete picture 
of the final state is available within the limits of truncation error. We note that the 
unsteady dynamical systems approach as presently formulated does not readily 
pinpoint critical parameter threshold values for bifurcations. 

6.2. Solutions 

It is useful to draw some distinctions between various possible numerical flow 
solutions. A numerical algorithm for a fluid flow calculation is a system of algebraic 
equations, and this system of algebraic equations can have multiple solutions. Some 
of these solutions are valid and some are spurious. To quote Schreiber and Keller 
[18]: 

Furthermore, since the nonlinearity in the Navier-Stokes equations is quadratic, the 
approximating algebraic equations are also quadratic (in any reasonable scheme). In the two- 
dimensional case with uniform mesh h in a domain of diameter O(I) there are essentially 
N’= I/h’ unknowns and coupled quadratic equations. Now a basic result in algebraic 
geometry assures us that this algebraic system has 2”’ solutions, although some minor 
difficulties, i.e., “common intersection components,” must be eliminated or else there can be 
manifolds of solutions. If the flow problem of interest’has a unique solution, we must hope 
that one of these 2”’ solutions is a close approximation to it and that all of the others is 
spurious. This cursory account suggests that most of the numerical solutions are spurious! 

Fortunately most of the “numerical” solutions are also complex, so real computations do 
not usually reveal them. Furthermore, solution procedures using continuation from known 
physical states may avoid them. But this is not always the case as we show in this note. Indeed 
even time marching schemes may lead to spurious steady states. Our results have revealed that 
this is particularly so when upstream differencing has been used in the driven cavity problem. 

Unfortunately there is at present no good theory to determine when a solution of the 
approximating problem is spurious and when it is “legitimate.” Indeed this imposes a severe 
burden on the computational fluid dynamicist to make additional tests on his results which 
will add weight to his assertion of their legitimacy. These tests may affirm known physical or 
mathematical properties of the flow or else they may assure known approximation properties 
of the numerical method (i.e., h*-truncation expansion. etc.). 

We have addressed this issue by checking that our code and unsteady simulation 
approach accurately reproduce the known steady state solutions for the aspect ratio 
one driven cavity at Re = 5000 [6] and by checking that our simulations reproduce 
the same qualitative periodic flow dynamics at Re = 5000 on both coarse and 
refined grids. 

In a study of the aspect ratio one driven cavity, Glowinski, Keller, and Rinehart 
[S, p. 8311 have said: 

A most interesting question is the possible occurrence of multiple solutions as the Reynolds 
number increases beyond some critical value. Actually and to our knowledge the computed 
solutions obtained in the range 0 < Re < 5000 by various authors using different methods 
agree quite well; this observation suggests that multiple solutions can only appear for greater 
values of Re. 
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The aspect ratio one driven cavity has corroborated solutions for 0 < Re < 10,000 
using both steady and unsteady algorithms. These various solutions differ from each 
other in terms of resolution and vortex details, but they are all steady solutions and 
qualitatively similar in terms of the large scale vortex structures. 

An example of qualitative flow features that can distinguish solutions is given by 
Stokes flow with reasonable symmetry assumptions in lower cavity corners. A 
sequence of more than twenty corner vortices was resolved by Gustafson and Leben 
[lo], where the smallest intensities were 0( lo-“). This type of detail in a steady 
flow solution points out that numerical solutions can be distinguished by resolution 
which may not have any dynamical significance. There is a dynamically significant 
difference between steady and periodic asymptotic flow solutions. 

There are several known and mutually agreeing steady numerical solutions of the 
aspect ratio two driven cavity for 0 < Re < 2000, plus the periodic solutions that we 
are reporting in this paper for Re = 5000. One of the features distinguishing the 
coarse grid and relined grid solutions that we have presented is the appearance in 
the refined mesh solution of a recirculating boundary layer all across the bottom of 
the cavity. This suggests the possibility that a second grid dependent steady 
solution could appear before the critical point for the Hopf bifurcation. The grid 
dependent appearance of the recirculating boundary layer as a partially formed 
tertiary vortex in the bottom of the cavity does not seem to have a significant effect 
upon the essential periodic asymptotic dynamics in this Reynolds number range. 

6.3. Parameters 

Flows like the driven cavity can be thought of as three parameter bifurcation 
problems with a principal flow parameter such as Reynolds number, a principal 
geometry parameter such as aspect ratio, and a principal resolution or discretiza- 
tion parameter such as mesh size. Even though there are at least these three 
parameters that affect the cavity flow, we have concentrated here on the question 
of Hopf bifurcation with respect to the Reynolds number parameter with aspect 
ratio fixed at two. We conjecture that a Hopf bifurcation with respect to Reynolds 
number occurs in all lid driven cavities at all aspect ratios. If there is not a Hopf 
bifurcation for all aspect ratios, then it would be interesting to know the limits on 
aspect ratio for which there are Hopf bifurcations. If there are such limits, then we 
expect that they occur for small aspect ratios and not for large. A more general 
parametric investigation is underway. 

7. CONCLUSIONS 

To summarize our numerical results for the aspect ratio two driven cavity: 

(1) On a coarse 48 x 96 grid at Re = 10,000 all measures indicate that the 
solution attains a periodic asymptotic state for t z 1500, with period 3.48 < 
T d 3.50. 

%I,90 l-18 
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(2) On a coarse 48 x 96 grid at Re = 5000 all measures indicate that the 
solution attains a periodic asymptotic state for t z 1100, with period 2.469 d T < 
2.484. The asymptotic state for this flow is characterised by primary and secondary 
vortices in the upper and lower cavity, by periodic shedding of small tertiary 
counterrotating vortices off the downstream wall, by a wavy disturbance across the 
mid-cavity shear layer, and by tertiary vortices in the bottom corners. 

(3) On a refined 96 x 192 grid at Re = 5000 all measures indicate that the 
solution attains a periodic asymptotic state for t z 3700, with period 2.305 6 T< 
2.313. The asymptotic state for this flow is characterized by primary and secondary 
vortices in the upper and lower cavity, by periodic shedding of small tertiary 
counterrotating vortices off the downstream wall, by a wavy disturbance across the 
mid-cavity shear layer, by a partially formed third principle vortex at the bottom 
of the cavity, and by quartiary vortices in the bottom corners. 

Based upon these computations we conjecture that the Navier-Stokes equations for 
the aspect ratio two driven cavity possess a Hopf bifurcation in the interval 
2000 d Re 6 5000, since the transition has been computationally demonstrated. 

Many interesting flow dynamics are shown by simulating the full time dependent 
flow history from the initial no flow state to the final periodic flow state. Particular 
examples are the development from early time of the periodic shedding of counter- 
rotating vortex couples from the downstream wall and the two unexpected transient 
oscillatory regimes, before converging to a permanent periodic solution in the 
Re = 5000 calculation with a 96 x 192 grid. Following the dynamical history of the 
flow helps in the interpretation of the final asymptotic state. 

The investigation of the qualitative properties of unsteady flows treated as 
infinite-dimensional dissipative dynamical systems is ushering in a new chapter of 
numerical analysis. We have presented a number of qualitative measures and 
indicators that we have found to be useful in this type of study. In particular, we 
stress the dangers of relying totally upon any one of these measures. 
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